Hacking Sony PlayStation
Blu-ray Drives

Boris Larin @octOxor

Who am |

Security researcher at cybersecurity company
A Reverse engineering

A Finding zero-days exploited in the wild
A CVE-2018-8174, CVE-2018-8453, CVE-2018-8589, CVE-2018-8611, CVE-2019-0797, CVE-2019-0859

A Finding supply chain attacks
A ASUS “Operation ShadowHammer” and few others

Previously presented at:

A Rootcon, Virus Bulletin, CanSecWest, SAS, BlueHat, TyphoonCon, ISC by Qihoo 360, AVAR, Code Blue ...

Some people might also know me as @octOxor
A Active in ps3dev scene since 2011

A Back in the days was mostly known for work on freeing DRM protected PS3 custom firmware's,
developing PS3 debugging tools, and etc

A Since then also was looking at all other video game consoles but without much publicity

What this talk is about

In this presentation| will talk about security and internals of Blu-ray disc drives for Sony PS3 & PS4
Games are distributed at optical media, that’s why drive should contain the best security possible

But that’s also makes it a very interesting subject for security research

1. Iwill discuss the process of obtaining and reverse engineering the firmware

2. | will provide in-depth analysis of vulnerabilities and their exploitation to achieve code
execution on multiple models of Sony PlayStation Blu-ray disc drives

3. | will talk about security features of Sony PlayStation Blu-ray disc drives

Disclaimer

This research is done purely out of curiosity and presented for educational purposes

This research does not help/support/enable/endorse to break the copyright law

TLDR:

| will be talking about security vulnerabilities, but they do not lead to full compromise of security
As far as | am aware its not possible to use my findings to circumvent copy protection

That’s the reason why | am even talking about that

Blu-ray Disc (BD) - Intro

High capacity digital optical disc data storage format developed to succeed DVD

Better laser, better materials, better physical format

2000: Sony unveils first Blu-ray disc prototypes
2002: Sony joins efforts with other industry partners

2006: Specifications were finalized
Very brief timeline: 4 | 2006: First commercial BD-ROM player and first Blu-ray disc movies
2006: PlayStation 3 released

2013: PlayStation 4 released
2013: Xbox One released

Infraryer Red Laser Blue Laser
CD DAVAD) BD

780 MB 4.7 GB 25 GB (up to 128 GB)

Blu-ray Disc (BD) - Physical format 3

Physical format is very well documented in whitepapers and patents
Three main types: Read-only (BD-ROM), Recordable (BD-R), and rewritable (BD-RE)

Lead-Out

Data

Lead-In

Transition Area
Burst Cutting Area
Clamping Area

v

A 4

v A 4

A 4 v

According to patents:
A BCA s in barcode-like format
A Lead-in / data can be recorded differently:
HFM Groove, Wobbled Groove, Wobble Pit, Normal Pit

A Lead-in contains control information and application
specific data

Blu-ray Disc (BD) - How PS discs are verified? 7

But patents do not reveal one simple thing — how PlayStation Blu-ray discs are verified?

In patents many things are application specific or described vaguely (e.g. BCA is in barcode format)

—

PS3 discs have only 1 visible PS4 discs have 2 barcodes in There are also special PS3 and
barcode, but is it a clamping different format PS4 discs with 2 barcodes in
area? same format

My thought was that drive firmware may reveal some details and secrets

PlayStation 3 Blu-ray drives

There have been a lot of different drive hardware revisions
If you will unpack PS3 FW UPDATE you will find firmware's for 12 (!) different drive models
Two of them seems to be for pre-retail units

First retail drive has a codename 302R and works over PATA interface

5“‘"{.‘);) ﬁ']
L9 -"-'-':..‘.::'.-:::::h)
»;3‘ a rggg
= A e 7
g - " 3
» - - .
¥ sy =
e 23 ! M
o s 3o e
el 30 g S 2=
- TP
® @ oy ”
o Vvl
er SR UL SR 1
e
oM SR ;
N | Z O
T 5 2wl :
Z =W AT SRS T T R NH 04
~ oes o - %
- S a 2 R d e AR -8
e : &n " H 1) f :H Q &
Sty ST e "y 3 i 3 ¢ ”.

PCB of first PS3 retail drive. Main MCU is produced by Sony

PlayStation 3 Blu-ray drives (2)

After some time Sony decide to start using MCU’s produced by Renesas
304R is a codename-of first drive with Renesas MCU

URE A GOG R PR Y P A PECPET LY, T8
/4 ; 4
F | L E R o

g AT

1Al $ " 8. !
ane «@ Xa

After that Sony switched between Sony MCU and Renesas MCU for each new model:
302R, 303R, 306R, 310R, 314R — Drive models with Sony MCU

304R, 308R, 312R, 316R — Drive models with Renesas MCU

318R — The most recent model, not had a chance to check this one

With time PATA interface was replaced with SATA

In Slim revisions Blu-ray PCB’s were integrated to motherboard

PlayStation 4 Blu-ray drives

Sony was much more consistent with Blu-ray drives for PlayStation 4
If you will unpack PS4 FW UPDATE you will find firmware's for 6 different drive models

Sony finally abandoned their own MCU

402R, 406R, 408R, 410R, 412R - Drive models with Renesas MCU
420R - Drive model with MediaTek MCU, it come out just recently

. & 2
o L_—
, 151)

PCB of first PS4 retail drive

10

Renesas Blu-ray drives

Renesas is the most common chip for Blu-ray drives across PS3 and PS4

That's why its the main subject of this talk

1

Getting firmware out of Renesas MCU

Actually this technique came out from Xbox 360 scene

Quite often firmware is stored on flash chip that is a separate die inside a package

A Firmware s really large in size and separate die is easier for MCU manufacturer

Tl]

zv

s
a
-
|- 3
¥
R T
‘: =
-

Geremia’s “kamikaze” hack for Xbox 360 drive

https://i.imgur.com/kYWO8.jpg

o
$1111

.

Getting firmware out of Renesas MCU (2) 13

https://www.psdevwiki.com/ps4/File:Renesas_SCEIl_r8j32...fpv_decapped.jpg

Getting firmware out of Renesas MCU (3)

=

Use acid to
decapsulate
MCU

Cut bond wires
with laser

W .,

d—f.f"

W

Rebond wires
to custom PCB
and read flash

14

Flash dump of Renesas MCU for PlayStation 3

Flash size is 2 MB
Contains: Mini FW (EMBOOT - Emergency Boot), Main FW, configuration data

200

FAULE

Sony Comp

=1 i
= L L

Entertainme

()]

31
45 T4
3
g

4]

W=l B -

L =
=

T e
LI 0 A I I O I L 0 0)

a
[}
a

What CPU architecture?

A Renesas bought semiconductor businesses of Hitachi, Mitsubishi and merged with NEC
A A variety of microcontrollers https://www.renesas.com/eu/en/products.html

A Google’d documentsrevealed that Blu-ray MCU’s are based on H8S

A Firmware uses Idmac instruction, so it’s a H8S/2600. Supported by IDA Pro

15

H8S/2600 16

Nice RISC-like architecture, reminds x86
69 instructions / 8 addressing modes

Generalregisters: erO-eré, er7 is stack pointer

Compilers:
A Renesas Hi-performance Embedded Workshop (HEW) func(0x1337CODE, *(u32*)addr, O)
A GCC

A IAR Embedded Workbench for H8

sub.l er2,er2

Each compiler uses different calling convention push.l er2
mov.l @addr:32, er1

mov.l #0x1337CODE, erO
jsr func

There are even changes between different versions of HEW
Usually arguments are passed through erO, er1 and stack

Hardware manuals: https://www.renesas.com/us/en/products/microcontrollers-microprocessors/h8s.html

Firmware

Most of space on flash is taken by main firmware (0x190000 bytes)

Do you remember that case when you reverse something and in each function there is a
debug message that reveals name of a function? Its not that case L

There are only about 45 strings in whole firmware, | can even fit them on this slide

How do developers debug their code without debug messages?

A

A
A
A

Basically 2 MB is barely enough to fit firmware, simply no space for debug strings
Log trace functionality exists in firmware, but integer is passed as ID of a message
ID is converted to a string inside special software that developer has

Common technique, but bad for RE

Firmware reverse engineering: the basics

You want to download as much as you can from website of hardware manufacturer
A Source code

A Libraries

A Compilers

You need it to make the process of reverse engineering easier:
A Compile sources and bindiff with your firmware

A Generate FLIRT signatures for IDA Pro

A Get MMIO definitions and structures

18

Firmware reverse engineering: this case

Renesas provides a huge list of stuff for download

Unfortunately any DVD/BD related stuff is not available publicly

A Its really complicated the whole project, but | am used to such things

Renesas owns a dozens of different RTOS’es, some are available for download

Renesas Hi-performance Embedded Workshop (HEW) is also available for download

A We get compiler that is likely was used to compile firmware

https://www.renesas.com/jp/ja/products/software-tools/discontinued-tools.html#downloads

Reverse engineering compilers

Looking through files of HEW compiler | was not able to find sources and libraries

It appeared that they are stored inside .pak files: libsrc.pak, libinc.pak, asm2600a.pak, etc

48 00 00 79 00 00 00 089 64 64 64 ZH...v..4

a.
2E 73 61 64 C7 3B 2F 1 02 08 02 2 3. Cr S ray

. addd

FD 0& EE 20 20 48 3 2C 48 38 2ZF 3: y.i8 HB5,yHB/:

30 20 53 : 2 449 3 20 4. 13 & IZEHZZI SYERIES C ¥Co
Example of asm2600a.pak
Necessary files are unpacked during compilation to temporary folder

Unpacking algorithm was found inside Ibg38.exe - abbreviation for Library Generator

; HB3,HB/380 SERIES C/C++ Compiler Ver. 6.0 ;
; Buntime Library ;
; Copyright {C) 1994,2002 Hitachi,Ltd.

; Licensed Material of Hitachi,Ltd.

:Assenble:
asnd8 -def-§CPU-<CPU> i_itodif

Example of unpacked assembly file

20

Reverse engineering compilers (Results)

HEW did not contain any useful information about hardware

But it was possible to generate IDA Pro FLIRT signatures

|z|’ List of applied library modules @ IDA View-A

Efunc Library narne

Ei h8_700_lib2600a Applied 'HB5/2600 V.7.00

Functions: Bfinl - Set bit field on long, Divl - Divide long, Ftol - Transform float to long, etc...

They are used in firmware, so it’s a useful finding

21

Reverse engineering real-time operating system (RTOS) 22

Finding RTOS functions is very important

Data and control flow might be passed between different tasks

Got many RTOS’es from Renesas
All of them are similar, but still have some differences
In most cases code is written in assembly for different architectures

Nothing closely matches RTOS used in drive firmware, so they are not really useful

The best thing about reverse engineering firmware developed by Japanese company is that it likely
to have RTOS that follows >ITRON (Micro Industrial TRON) specification

This specification defines names of functions, their arguments, etc (more than 300 pages)

>|TRON specification: http://www.ertl.jp/ITRON/SPEC /FILE /mitron-400e.pdf

AT Attachment (ATA) interface

Hard disk drives (HDD), solid state drives (SSD), CD/DVD/BD optical disc drives

What they have in common?

SCSI-3 Primary | SCSI-3 Device Specific For optical discs there are two
Command Set Command Sets competing specifications:
ATAPI Command Set 1) Multi-Media Commands (MMC)
ATA Command Set .
HDD,/SSD commands Transport SCSI com.manclls for.all other devices
(E.g. optical disc drives) 2) “Mt. Fuji Commands for
— Multimedia Devices” by SFF
Physical interfaces: committee, Pioneer, Panasonic,

Serial ATA (SATA) Sony Toshiba

Parallel ATA (PATA - obsolete)

ATA protocols hierarchy

Reverse engineering ATAPI devices

SCSI-3 Primary Command Set implements INQUIRY command
It sends information about device to client
This information contains VENDOR IDENTIFICATION, PRODUCT IDENTIFICATION, etc

- Samsung 550 750 EVO 120GB

SCS| Disk Device

Information obtained from INQUIRY command

Look for such strings in firmware and you will find handler for SCSI commands

Then you can find interesting code and reverse it (with help of specifications)

24

Embedded device reverse engineering roadmap

Acquiring firmware
Recognizing CPU architecture
Collecting information about hardware
Debug strings
MMIO addresses definitions, names and structures
Identifying standard library functions
Identifying RTOS functions
Pinpointing interesting logic and reverse engineering it
O Emulating firmware to aid in static analysis

(O Getting code execution (as a final goal or a way to enable field for experiments)

25

Emulating firmware 26

GDB includes a simulator for H8 architecture
.Jconfigure --target=h8300-hitachi-elf --enable-sim

Convert firmware to ELF and you are good to go, can emulate some snippets of code

| actually like using IDA Pro as debugger GUI, but it has some flaws of course
GDB debugger plugin that comes with IDA Pro is closed source
Recently Hex-Rays improved it a lot, but back then it was buggy and supported only a few targets

| wrote my own GDB debugger plugin to work with IDA Pro

It did not took much time to make, but it saved a lot of time while debugging this firmware and other
officially not supported targets (e.g. GDB support for x64 targets was added only in IDA Pro 6.9)

Emulating firmware (In action)

™ Da-

File Edit

b @O e er plugin

Jump Search View Debugger Options Win

AR R EY & 3 oha B

Library function Data [Regular function Ui

BA52FF 40

W Instruction External symbol

Debug View ¢
IDA] E Functions
stm.1 erk-eré, E-sp
sub.u # . K7

nou.l #byte_81A3CS, er3
nou.1l erd, erd

mou.b #2, r51

sub.1 erd, eré

loc_52FF6@:

mov.l er4, erd

add.1 erbd, erd

mou.b @{aPlaystationi:3Z,er6), ril
mov.b Eerd, ral

cmp.b rel, r1l

beq loc_52FF76:

sub.b r51, r51

bra loc_52FF80: loc_52FF76:
inc.1 #1, erd6
cmp.1 # , Bré

81 20 6D F4 79 37 BA 10 7A B3 00 81 A3 C8 BOF 84 .-miy7..z..BrL.O
FD 82 1A E6 BF CO BA EQ 78 60 6A 29 00 58 FC OF = L.px™j) %K.
UL 1C 89 47 64 18 DD 48 6A BB 76 VA 26 B8 88 h. P -

Enums

Hh, Graph overview

E‘ Output window

thread has start
: attached to process HMAIN _PROGESS (pid=1)

*Functions

rindow”

ed (tid=1)

ok

erb BpB190B8
er1 0066A58
er2 gppaaeea
er3 BB81A3CSE
ery GB8196BE
erS BpOOAAR2
er6 BODAOOOO
Sp 900033D8
pc BO52FF6C
ccr Bp0AAA8 A

dword_8
byte_81A3C8

dword_@+2
dword_8

Playstationi_sub_5

27

Renesas Blu-ray drives for PC

While | was reverse engineering firmware for PlayStation 3, | actually was looking at multiple FW’s
It appeared that there exist some Blu-ray drives for PC with Renesas MCU
Manufactured by Hitachi-LG Data Storage (HLDS / HL-DT-ST)

Not encrypted firmware can be grabbed from firmware update utility

PC and PS firmware's are different, but its clear that they are built using the same SDK
Many Blu-ray/hardware related functions are the same

Peripheral devices are the same and mapped to the same MMIO addresses

PC firmware uses the same cryptographic processor

PC firmware uses RX850 RTOS

PC firmware contains a little more debug strings

o Io Io Do P>

A Reveals the codename of Renesas Blu-ray LS| — “Indigo3”

Cryptographic processor

Huge part of firmware is occupied by crypto-related functions

All cryptographic operations are handled by specially dedicated IC
Crypto processor effectively protects all secrets

A You cant just dump firmware and reverse engineer all of it

Communication process with crypto processor is really complicated and obscure

Examples of graphs for crypto processor related functions

29

Cryptographic processor (2)

Crypto processor runs some kind of firmware

Functionality can be extended with additionally
loaded modules (or patches) and additional keys

A PlayStation firmware uses these features

For me its not exactly clear why so many things are
performed within main firmware

A Crypto processor has limited memory resources?

To play with crypto processor and test ideas
we need to get code execution

30
(‘'wait_OxFF3FF058()) done;
(unsigned int)OxFF3FFOC4 = Ox34E0A89;
(‘wait_OxFF3FFOO01_bit_6()) done;
(unsigned int)OxFF3FFOCO = 0xD4398114;
('wait_OxFF3FFOCB()) done;
(unsigned int)OxFF3FF084 = 0x18;
(unsigned int)OxFF3FFOC4 = 0x410E0309;
(unsigned int)OxFF3FF004 = 0x400071;
(‘wait_OxFF3FFOO01_bit_6()) done;
set_key_to_OxFF3FFOCO((unsigned char*)key_0);
(unsigned int)OxFF3FFOC4 = 0x22450B19;

(‘wait_OxFF3FFOO01_bit_6()) done;

(unsigned int)OxFF3FFOCO = 0x1D385210;

Snippet from crypto-related function

Exploiting ATAPI devices 31

Earlier this year | gave a presentation at CanSecWest — “Hacking Microcontroller Firmware through a USB”
More details here: https://securelist.com/hacking-microcontroller-firmware-through-a-usb/

In this research | examined how awesome protocol of control transfers is for USB exploitation

SCSI protocol might be even more awesome, though less common

Client sends a Command Descriptor Block (CDB) to device

Command Descriptor Block (CDB)
Size is usually varies from 6 to 16 bytes

First byte is OPERATION CODE
Next following fields are different for each command,
but common fields include logical offset (LBA) and transfer length

M=

Depending on type of CDB, commands can be used to read and write data from and to device

Device also provides status of command and error code (sense) in response to client

Looking for vulnerabilities in PlayStation 3 Blu-ray drive firmware 32

It seems that firmware itself was developed by some 39 party company
Then when it was ready if was handled to Sony, to add console specific stuff
All general SCSI commands are looking fine

But some commands implemented by Sony doesn't seem to have boundary checks

Looking for vulnerabilities in PlayStation 3 Blu-ray drive firmware (2) 33

One of the examples is vulnerable command with OPERATION CODE = OxET1
This command is used for authentication of Blu-ray drive and video game console

So the main purpose of it is to implement security ...

CDB Fields
OPERATION CODE (OxE1

Transfer length ﬁ OOB write

Buffer size is Ox80 bytes, bug lets to overwrite up to OxFFFF bytes

Static buffer is located somewhere in the middle of Ox81XXXX address space

Memory map

Non-volatile memory

Ox005F_FFFF

0x0040_0000

0x0010_FFFF

0x0010_0000

FLASH

ROM

0x0000_7FFF
0x0000_0000

Volatile memory

DRAM

N

SRAM

DRAM

DRAM

Ox0081_FFFF
0x0081_0000

Ox0080_FFFF
0x0080_0000

MMIO registers

OxFFFF_FFFF
OxFFFF_E000

OxFFFD_FFFF
OxFFFD_0000

OxFF42_FFFF
0xFF40_0000

OxFF3F_FFFF
OxFF3F_0000

34

DSP

CPU

Interrupts,
UART, etc

Crypto,
Flash

Volatile memory (SRAM)

Volatile memory

_dE

DRAM

[AY

0x0000_7FFF
0x0000_0000

SRAM

DRAM

DRAM

Ox0081_FFFF
0x0081_0000

Ox0080_FFFF
0x0080_0000

SRAM - Static random access memory
A Small size (0x8000 bytes)
A Executable (Configurable)

Contains:
A Exception / Interrupt vector table

A Code of real-time operating system
A Important variables, pointers
A Task stacks

35

Volatile memory (DRAM)

Volatile memory

Ox0081_FFFF

4 DRAM 0x0081_0000
M g —iais
R RN g —
\ DRAM 0x0080_FFFF
N 0x0080_0000
DRAM | T~ "
ox??222_717?
0x0000_7FFF SRAM

0x0000_0000

36

DRAM - Dynamic random access memory

A Large size (Several megabytes)

A Initially exact memory location and
size were unknown because most of
the time DRAM is accessed through
Direct Memory Access (DMA)

Contains:

A Data from disc

A Data from SCSiI client

A Data that do not fit to SRAM

Volatile memory (DRAM) (2)

0x0000_7FFF
0x0000_0000

Volatile memory

DRAM

LB\

_dE

DRAM

DRAM

Ox0081_FFFF
0x0081_0000

Ox0080_FFFF
0x0080_0000

SRAM

37

Firmware is too big, SRAM is too small to
fit all variables

Staff that didn’t fit to SRAM is stored in
special regions of DRAM

PS firmware actively uses memory
region O0x0081_0000

Memory region Ox0080_0000 is
unused, but | found out that it exist
from Hitachi-LG Data Storage firmware

Volatile memory (DRAM) (3)

Volatile memory

DA

DRAM

0x0000_7FFF
0x0000_0000

SRAM

LIRS
’ —
s’ N

Ox0081_FFFF
DR 0x0081_0000
DRAM Ox0080_FFFF

0x0080_0000

38

We are able to overwrite 0x0081_0000
memory region with out of bounds write

How to exploit that?

Exploiting buffer overflow in DRAM

Exploitation turned out to be a very difficult

All variables are located at static addresses

A Heap exploitation techniques are not working there

At first you need to find a very good exploitation primitive

You need to overwrite many variables prior to reaching this primitive without crashing the device

A Debuggingis complicated, need to emulate/understand large portions of firmware

| ended up reverse engineering all functions that access datain 0x0081_0000 memory region
A There are no virtual function pointers stored there (no good candidates for overwrite)
A There are alot of buffers, structures, other variables... but not that much pointers

A Eventually | was able to find good exploitation primitives

39

Stumble into new bug class

| never had a chance to finish this exploit actually
While writing this exploit | decided to take a look at MMIO regs

In result | have found a new source for vulnerabilities

MMIO registers

OxFFFF_FFFF
OxFFFF_EO0O

OxFFFD_FFFF
OxFFFD_0000

OxFF42_FFFF
OxFF40_0000

OxXFF3F_FFFF
OxFF3F_0000

DSP

CPU

Interrupts,
UART, etc

Crypto,
Flash

Indigo DSP registers

DSP registers are very interesting

They are responsible for most of disc drive related functionality:
ATAPIlinterface

Laser

Servo

Disc data de-modulation (BCA, PIC, AACS Volume ID, etc)

DSP firmware loading

Etc

o Jo Do o Io Do

It would be so nice if we had access toit...

MMIO registers

a4

OxFFFF_FFFF

OxFFFF_EOOO Lel?
OXFFFD_FFFF cPU
OXFFED_0000

OxFF42_FFFF Interrupts,
OxFF40_0000 UART, etc
OxFF3F_FFFF Crypto,
OxFF3F_0000 Flash

Accessing Indigo DSP registers

Actually we do!

The whole area OxFFFF_EOOO-OxFFFF_FFFF is available for R/W through special SCSI commands

Read Indigo DSP registers

CDB Fields
OPERATION CODE (0x3C

Buffer ID (0x40

Offset

IHHHIIIHE
w N <
®

Length

w
H N <
()

Werite Indigo DSP registers

CDB Fields
OPERATION CODE (Ox3B

Mode (2
Buffer ID (0x40

Offset

Length

